Results in Control and Optimization (Dec 2024)

Satellite imagery, big data, IoT and deep learning techniques for wheat yield prediction in Morocco

  • Abdelouafi Boukhris,
  • Antari Jilali,
  • Abderrahmane Sadiq

Journal volume & issue
Vol. 17
p. 100489

Abstract

Read online

In the domain of efficient management of resources and ensuring nutritional consistency, accuracy in predicting crop yields becomes crucial. The advancement of artificial intelligence techniques, synchronized with satellite imagery, has emerged as a potent approach for forecasting crop yields in modern times. We used two types of data: spatial data and temporal data. Spatial data are gathered from satellite imagery and processed using ArcGIS to extract data about crops based on several indices like NDVI and NWDI. Temporal data are gathered from agricultural sensors such as temperature sensors, rainfall sensor, precipitation sensor and soil moisture sensor. In our case we used Sentinel 2 satellite to extract vegetation indices. We have used IoT systems, especially Raspberry Pi B+ to collect and process data coming from sensors. All data collected are then stored into a NoSQL server to be analysed and processed. Several machine learning and deep learning algorithms have been used for the processing of crop recommendation system, such as logistic regression, KNN, decision tree, support vector machine, LSTM, and Bi-LSTM through the collected dataset. We used GRU deep learning model for the best performance, the RMSE and R2 for this model was 0.00036 and 0.99 respectively.The main contribution of our paper is the development of a new system that can predict several crop yields, such as wheat, maize, etc., using IoT, satellite imagery for spatial data and the use of sensors for temporal data. We are the first paper that has combined spatial data and temporal data to predict crop yield based on deep learning algorithms, unlike other works that uses only remote sensing data or temporal data. We created an E-monitoring crop yield prediction system that helps farmers track all information about crops and show the result of prediction in a mobile application. This system helps farmers with more efficient decision making to enhance crop production. The main production regions of wheat in Morocco are in the rainfed areas of the plains and plateaus of Chaouia, Abda, Haouz, Tadla, Gharb and Saïs. We studied three main regions well known for wheat production which are Rabat-Salé, Fez-Meknes, Casablanca-Settat.

Keywords