Diagnostics (Mar 2023)

Single-Site Experience with an Automated Artificial Intelligence Application for Left Ventricular Ejection Fraction Measurement in Echocardiography

  • Krunoslav Michael Sveric,
  • Roxana Botan,
  • Zouhir Dindane,
  • Anna Winkler,
  • Thomas Nowack,
  • Christoph Heitmann,
  • Leonhard Schleußner,
  • Axel Linke

DOI
https://doi.org/10.3390/diagnostics13071298
Journal volume & issue
Vol. 13, no. 7
p. 1298

Abstract

Read online

Left ventricular ejection fraction (LVEF) is a key parameter in evaluating left ventricular (LV) function using echocardiography (Echo), but its manual measurement by the modified biplane Simpson (MBS) method is time consuming and operator dependent. We investigated the feasibility of a server-based, commercially available and ready-to use-artificial intelligence (AI) application based on convolutional neural network methods that integrate fully automatic view selection and measurement of LVEF from an entire Echo exam into a single workflow. We prospectively enrolled 1083 consecutive patients who had been referred to Echo for diagnostic or therapeutic purposes. LVEF was measured independently using MBS and AI. Test–retest variability was assessed in 40 patients. The reliability, repeatability, and time efficiency of LVEF measurements were compared between the two methods. Overall, 889 Echos were analyzed by cardiologists with the MBS method and by the AI. Over the study period of 10 weeks, the feasibility of both automatic view classification and seamlessly measured LVEF rose to 81% without user involvement. LVEF, LV end-diastolic and end-systolic volumes correlated strongly between MBS and AI (R = 0.87, 0.89 and 0.93, p n = 40, test–retest) by AI was excellent compared to MBS (coefficient of variation: 3.2% vs. 5.9%), although the median analysis time of the AI was longer than that of the operator-dependent MBS method (258 s vs. 171 s). This AI has succeeded in identifying apical LV views and measuring EF in one workflow with comparable results to the MBS method and shows excellent reproducibility. It offers realistic perspectives for fully automated AI-based measurement of LVEF in routine clinical settings.

Keywords