Toxins (Jul 2022)

Impact of Cyanotoxin Ingestion on Liver Cancer Development Using an At-Risk Two-Staged Model of Mouse Hepatocarcinogenesis

  • Igor Mrdjen,
  • Jiyoung Lee,
  • Christopher M. Weghorst,
  • Thomas J. Knobloch

DOI
https://doi.org/10.3390/toxins14070484
Journal volume & issue
Vol. 14, no. 7
p. 484

Abstract

Read online

Exposure to cyanobacterial hepatotoxins has been linked to the promotion and increased incidence of liver cancer in pre-clinical and epidemiologic studies. The family of hepatotoxins, microcystins (MCs), are produced by over 40 cyanobacterial species found in harmful algal blooms (HABs) worldwide, with MC-LR being the most common and potent MC congener. In the current study, we hypothesized that the low-dose chronic ingestion of Microcystis cyanotoxins via drinking water would promote liver carcinogenesis in pre-initiated mice. Four groups of C3H/HeJ mice received one intraperitoneal (i.p.) injection of diethylnitrosamine (DEN) at 4 weeks of age. Three weeks later, the mice were administered ad libitum drinking water containing one of the following: (1) reverse osmosis, deionized water; (2) water containing 500 mg/L phenobarbital (PB500); (3) water with purified MC-LR (10 µg/L) added; or (4) water containing lysed Microcystis aeruginosa (lysate; 10 µg/L total MCs). The exposure concentrations were based on environmentally relevant concentrations and previously established Ohio EPA recreational water MC guidelines. Throughout the 30-week exposure, mouse weights, food consumption, and water consumption were not significantly impacted by toxin ingestion. We found no significant differences in the number of gross and histopathologic liver lesion counts across the treatment groups, but we did note that the PB500 group developed lesion densities too numerous to count. Additionally, the proportion of lesions classified as hepatocellular carcinomas in the MC-LR group (44.5%; p p p < 0.001) compared to water (96.8%), PB500 (95.0%), and MC-LR (95.7%) exposures. Using cyanotoxin levels at common recreational water concentration levels, we demonstrate the cancer-promoting effects of a single cyanotoxin MC congener (MC-LR). Furthermore, we show enhanced hepatocarcinogenesis and significant mortality associated with combinatorial exposure to the multiple MCs and bioactive compounds present in lysed cyanobacterial cells—a scenario representative of the ingestion exposure route, such as HAB-contaminated water and food.

Keywords