Energies (Mar 2023)
The Influence of the Reaction Parameters on the Synthesis of Fatty Acid Octyl Esters and Investigation of Applications Properties of Its Blends with Mineral Diesel
Abstract
The first aim of this paper is to study the influence of four parameters of the transesterification reaction—reaction temperature (40–80 °C), time (1–3 h), the molar ratio of 1-octanol to sunflower oil (4:1–10:1) and mass fraction of the catalyst (1–3 wt%)—on the conversion of oil to biodiesel (octyl esters of fatty acids), with potassium hydroxide as a catalyst. The highest conversion, of 99.2%, was obtained at 60 °C, a molar ratio of 1-octanol to sunflower oil of 10:1, and with 2 wt% of the catalyst after an hour. The optimal conditions determined with response surface methodology (RSM) when aiming for the lowest possible parameter values and a conversion of 95% or higher were a temperature of 40 °C, time of 1 h, 1-octanol to oil molar ratio at 8.11:1 and mass fraction of catalyst of 2.01%. Furthermore, post-synthesis and purification (>99%), the application properties of pure fatty acid octyl esters (FAOCE) and their blends with mineral diesel and 1-octanol were evaluated. Standardized tests were conducted to measure the fuel’s density, viscosity, cold filter plugging point (CFPP), and lubricity. The addition of FAOCE in mineral diesel increases its density, viscosity, and lubricity. When added up to 20 vol%, FAOCE did not have an influence on the blend’s CFPP value. Still, all the blend property values fell within the limits required by standard EN 590.
Keywords