BMC Genomics (Mar 2022)

Diversification of the aquaporin family in geographical isolated oyster species promote the adaptability to dynamic environments

  • Yanglei Jia,
  • Xiao Liu

DOI
https://doi.org/10.1186/s12864-022-08445-4
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Background The diversified aquaporin (AQP) family that was derived from gene duplication and subsequent functional differentiation play critical roles in multiple physiological processes and in adaptation to the dynamic environments during the evolutionary process. Oysters are a group of bivalve fauna in Mollusca that were widely distributed around the world and show extraordinary adaptation to harsh environments. However, knowledge is lacking with the diversity and evolution of the AQP family in oysters, even in molluscs. Results Here, we performed a comprehensive analysis of the AQP family in three geographical isolated oyster species that are native to different environments. Genome distribution and phylogenetic analysis revealed that the expansion of the AQP family in oysters were attributed to tandem duplication. Synteny analysis indicated that large-scale inversions lead to the independent duplication or deletion of the AQPs after speciation. As a consequence, these independent duplication events contributed to the diversification of the AQP family in different oysters. Pore pattern analysis suggested that the duplicated AQPs in oysters were highly diversified in inner surface profiles, implying the subsequent functional differentiation. The comparison conducted based on the transcriptome data demonstrated that the functional differentiated AQP family members in oysters may play critical roles in maintaining the balance between the stationary homeostasis and dynamic environments. Conclusions Our observation provides evidence for the correlation between the duplicated and functional differentiated AQP family and the adaptation to stationary life under dynamic environments in oysters. Additionally, it also broadens our knowledge of the evolution of AQP family in molluscs.

Keywords