Reports in Advances of Physical Sciences (Sep 2017)
A Model of Spacetime Dynamics with Embedded Quantum Objects
Abstract
General relativity theory (GRT) tells us that (a) space and time should be viewed as an entity (called spacetime), (b) the spacetime of a world that contains gravitational objects should be viewed as curved, and (c) spacetime is a dynamical object with a dynamically changing extent and curvature. Attempts to achieve compatibility of GRT with quantum theory (QT) have typically resulted in proposing elementary units of spacetime as building blocks for the emergence of larger spacetime objects. In the present paper, a model of curved discrete spacetime is presented in which the basic space elements are derived from Causal Dynamical Triangulation. Spacetime can be viewed as the container for physical objects, and in GRT, the energy distribution of the contained physical objects determines the dynamics of spacetime. In the proposed model of curved discrete spacetime, the primary objects contained in spacetime are “quantum objects”. Other larger objects are collections of quantum objects. This approach results in an accordance of GRT and quantum (field) theory, while coincidently the areas in which their laws are in force are separated. In the second part of the paper, a rough mapping of quantum field theory to the proposed model of spacetime dynamics is described.
Keywords