Forests (Jul 2014)

A Quantitative Index of Forest Structural Sustainability

  • Jonathan A. Cale,
  • Stephen A. Teale,
  • Justin L. West,
  • Lianjun I. Zhang,
  • David R. Castello,
  • Peter Devlin,
  • John D. Castello

DOI
https://doi.org/10.3390/f5071618
Journal volume & issue
Vol. 5, no. 7
pp. 1618 – 1634

Abstract

Read online

Forest health is a complex concept including many ecosystem functions, interactions and values. We develop a quantitative system applicable to many forest types to assess tree mortality with respect to stable forest structure and composition. We quantify impacts of observed tree mortality on structure by comparison to baseline mortality, and then develop a system that distinguishes between structurally stable and unstable forests. An empirical multivariate index of structural sustainability and a threshold value (70.6) derived from 22 nontropical tree species’ datasets differentiated structurally sustainable from unsustainable diameter distributions. Twelve of 22 species populations were sustainable with a mean score of 33.2 (median = 27.6). Ten species populations were unsustainable with a mean score of 142.6 (median = 130.1). Among them, Fagus grandifolia, Pinus lambertiana, P. ponderosa, and Nothofagus solandri were attributable to known disturbances; whereas the unsustainability of Abies balsamea, Acer rubrum, Calocedrus decurrens, Picea engelmannii, P. rubens, and Prunus serotina populations were not. This approach provides the ecological framework for rational management decisions using routine inventory data to objectively: determine scope and direction of change in structure and composition, assess excessive or insufficient mortality, compare disturbance impacts in time and space, and prioritize management needs and allocation of scarce resources.

Keywords