Journal of Clinical Medicine (Sep 2020)

Evaluation of Insertion Energy as Novel Parameter for Dental Implant Stability

  • Tanja Grobecker-Karl,
  • Anthony Dickinson,
  • Siegfried Heckmann,
  • Matthias Karl,
  • Constanze Steiner

DOI
https://doi.org/10.3390/jcm9092977
Journal volume & issue
Vol. 9, no. 9
p. 2977

Abstract

Read online

Insertion energy has been advocated as a novel measure for primary implant stability, but the effect of implant length, diameter, or surgical protocol remains unclear. Twenty implants from one specific bone level implant system were placed in layered polyurethane foam measuring maximum insertion torque, torque–time curves, and primary stability using resonance frequency analysis (RFA). Insertion energy was calculated as area under torque–time curve applying the trapezoidal formula. Statistical analysis was based on analysis of variance, Tukey honest differences tests and Pearson’s product moment correlation tests (α = 0.05). Implant stability (p = 0.01) and insertion energy (p p = 0.17). Short implants showed a significant decrease in implant stability (p = 0.01), while reducing implant diameter did not cause any significant effect. Applying the drilling protocol for dense bone resulted in significantly increased insertion energy (p = 0.02) but a significant decrease in implant stability (p = 0.04). Insertion energy was not found to be a more reliable parameter for evaluating primary implant stability when compared to maximum insertion torque and resonance frequency analysis.

Keywords