BMC Musculoskeletal Disorders (May 2022)

Effect of the level of manual performance disability caused by exposure to vibration among sailors working on sailing speed vessels

  • Hamid Saeidnia,
  • Reza Esmaeili,
  • Mohammad Babamiri,
  • Farideh Pourtaghi,
  • Soheil Hassanipour,
  • Gholamhossein Pourtaghi

DOI
https://doi.org/10.1186/s12891-022-05448-w
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background hand-arm vibration is one of the typical annoying physical factors. Hand-arm vibration syndrome (HAVS) is a disorder caused by vibrating working tools which vibrate hands beyond the threshold. Long-term HAVS may result in damage to blood vessels, chronic numbness in the fingers, bone injury, and muscular weakness. People are exposed to high-rate noise vibration in a variety of situations, including vessel employment and operating in tiny boats. Moreover, the extant study was conducted to examine manual function disability levels caused by Sailing Speed Vessels (SSV) vibration. Methods The extant study was quasi-experimental research in which, 52 male sailors in SSVs were chosen as the experimental group, and 27 office personnel were selected as the control group. The demographic factors questionnaire, DASH questionnaire, grip and pinch strength tests, the neurosensory exam, and the skill-dexterity test were all employed in this study. SPSS23 software was used to analyze the data. Results The findings suggested that the experimental group experienced greater vibration disorder symptoms than the control group. Because the experimental group had a higher score, the individuals experienced poorer circumstances in terms of arm, shoulder, and hand impairment as compared to the control group. The mean grip strength of hands and fingers in two hands of the experimental group was lower than the control group (P < 0.05). There was a statistically significant relationship among grip strengths of both experimental and control groups (P < 0.05). There was a reduction in skill and dexterity of both dominant and non-dominant hands of members in the experimental group. According to the statistical tests, there was no significant association between dominant (P = 0.001) skills and non-dominant (P = 0.010) hands in experimental and control groups. There was not also any significant relationship between skill and dexterity of both hands (P = 0.001) and the dominant hand tweezer test (P = 0.001) in two experimental and control groups. There was a statistically significant association between experimental and control groups in terms of assembly skill and dexterity (P = 0.482). Conclusion Individuals who are at risk of vibration experience less physical and sensory function. DASH score, grip strength, skill, and dexterity could predict the reduction in physical function disability.

Keywords