Ain Shams Engineering Journal (Dec 2024)

Dynamic performance improvement of oscillating water column wave energy conversion system using optimal walrus optimization algorithm-based control strategy

  • Habiba A. ElDemery,
  • Hany M. Hasanien,
  • Mohammed Alharbi,
  • Chuanyu Sun,
  • Dina A. Zaky

Journal volume & issue
Vol. 15, no. 12
p. 103144

Abstract

Read online

The optimal design of the proportional-integral (PI) controller using the walrus optimization algorithm (WOA) with the aim to enhance the dynamic performance of a grid-connected wave energy conversion (WEC) system when subjected to diverse operational conditions is presented in this paper. The proposed system under study consists of an oscillating water column (OWC) device coupled with a permanent magnet synchronous generator (PMSG) to supply power to the grid. Power electronics devices in the form of a generator-side converter (GSC) and a grid-side inverter (GSI) are used to couple the grid and WEC systems. The GSC is used to minimize generator losses and maximize generator real power through the control of d-axis and q-axis currents (id, and iq) of the PMSG. The GSI is used to control the point of common coupling (PCC) and DC-link voltages (VPCC,VDC), respectively. The PI controllers, used to minimize the error between the actual current and voltage values with their respective reference values, are optimally designed using the WOA. The fitness function of the optimization problem is based on the integral square error criterion (ISE). Presented in this paper is a model for the OWC-WEC system and a control strategy to maximize generated power, minimize generator losses, and keep the VDC, VPCC at required values, the usage of WOA to design the PI controllers, and the simulations of system results. The proposed WOA-based PI controller design’s effectiveness is evaluated by comparing its simulation results with that obtained from using genetic algorithm (GA), grey wolf (GWO), particle swarm (PWO), and harmony search (HS) optimization-based PI controllers under symmetrical and unsymmetrical faults. The proposed strategy shows an enhancement in the dynamic performance of OWC wave energy systems when compared to the other optimization algorithm-based PI controllers, as well as achieving the least value for ISE, which reached 0.172.

Keywords