Physical Review X (Dec 2017)

Superconductivity-Insensitive Order at q∼1/4 in Electron-Doped Cuprates

  • H. Jang,
  • S. Asano,
  • M. Fujita,
  • M. Hashimoto,
  • D. H. Lu,
  • C. A. Burns,
  • C.-C. Kao,
  • J.-S. Lee

DOI
https://doi.org/10.1103/PhysRevX.7.041066
Journal volume & issue
Vol. 7, no. 4
p. 041066

Abstract

Read online Read online

One of the central questions in the cuprate research is the nature of the normal state that develops into high-temperature superconductivity (HTSC). In the normal state of hole-doped cuprates, the existence of a charge density wave (CDW) is expected to shed light on the mechanism of HTSC. With evidence emerging for CDW order in the electron-doped cuprates, the CDW is thought to be a universal phenomenon in high-T_{c} cuprates. However, the CDW phenomena in electron-doped cuprates are quite different than those in hole-doped cuprates. Here, we study the nature of the putative CDW in an electron-doped cuprate through direct comparisons between as-grown and postannealed Nd_{1.86}Ce_{0.14}CuO_{4} (NCCO) single crystals using Cu L_{3}-edge resonant soft x-ray scattering (RSXS) and angle-resolved photoemission spectroscopy (ARPES). The RSXS result reveals that the nonsuperconducting NCCO shows the same reflections at the wave vector (∼1/4, 0, l) as the reported superconducting NCCO. This superconductivity-insensitive signal is quite different from the CDW reflection in hole-doped cuprates. Moreover, the ARPES result suggests that the fermiology cannot account for such wave vectors. These results call into question the universality of the CDW phenomenon in the cuprates.