Boundary Value Problems (Jul 2021)

Nonlocal Lazer–McKenna-type problem perturbed by the Hardy’s potential and its parabolic equivalence

  • Masoud Bayrami-Aminlouee,
  • Mahmoud Hesaaraki,
  • Mohamed Karim Hamdani,
  • Nguyen Thanh Chung

DOI
https://doi.org/10.1186/s13661-021-01545-2
Journal volume & issue
Vol. 2021, no. 1
pp. 1 – 42

Abstract

Read online

Abstract In this paper, we study the effect of Hardy potential on the existence or nonexistence of solutions to the following fractional problem involving a singular nonlinearity: { ( − Δ ) s u = λ u | x | 2 s + μ u γ + f in Ω , u > 0 in Ω , u = 0 in ( R N ∖ Ω ) . $$\begin{aligned} \textstyle\begin{cases} (-\Delta )^{s} u = \lambda \frac{u}{ \vert x \vert ^{2s}} + \frac{\mu }{u^{\gamma }}+f & \text{in } \Omega, \\ u>0 & \text{in } \Omega, \\ u=0 & \text{in } (\mathbb{R}^{N} \setminus \Omega ). \end{cases}\displaystyle \end{aligned}$$ Here 0 0 $\lambda >0$ , γ > 0 $\gamma >0$ , and Ω ⊂ R N $\Omega \subset \mathbb{R}^{N}$ ( N > 2 s $N > 2s$ ) is a bounded smooth domain such that 0 ∈ Ω $0 \in \Omega $ . Moreover, 0 ≤ μ , f ∈ L 1 ( Ω ) $0 \leq \mu,f \in L^{1}(\Omega )$ . For 0 Λ N , s $\lambda > \Lambda _{N,s}$ . Besides, we consider the parabolic equivalence of the above problem in the case μ ≡ 1 $\mu \equiv 1$ and some suitable f ( x , t ) $f(x,t)$ , that is, { u t + ( − Δ ) s u = λ u | x | 2 s + 1 u γ + f ( x , t ) in Ω × ( 0 , T ) , u > 0 in Ω × ( 0 , T ) , u = 0 in ( R N ∖ Ω ) × ( 0 , T ) , u ( x , 0 ) = u 0 in R N , $$\begin{aligned} \textstyle\begin{cases} u_{t}+(-\Delta )^{s} u = \lambda \frac{u}{ \vert x \vert ^{2s}} + \frac{1}{u^{\gamma }}+f(x,t) & \text{in } \Omega \times (0,T), \\ u>0 & \text{in } \Omega \times (0,T), \\ u =0 & \text{in } (\mathbb{R}^{N} \setminus \Omega ) \times (0,T), \\ u(x,0)=u_{0} & \text{in } \mathbb{R}^{N}, \end{cases}\displaystyle \end{aligned}$$ where u 0 ∈ X 0 s ( Ω ) $u_{0} \in X_{0}^{s}(\Omega )$ satisfies an appropriate cone condition. In the case 0 1 $\gamma >1$ with 2 s ( γ − 1 ) < ( γ + 1 ) $2s(\gamma -1)<(\gamma +1)$ , we show the existence of a unique solution for any 0 < λ < Λ N , s $0< \lambda < \Lambda _{N,s}$ and prove a stabilization result for certain range of λ.

Keywords