Applied Sciences (Sep 2024)

A Multi-Organ Segmentation Network Based on Densely Connected RL-Unet

  • Qirui Zhang,
  • Bing Xu,
  • Hu Liu,
  • Yu Zhang,
  • Zhiqiang Yu

DOI
https://doi.org/10.3390/app14177953
Journal volume & issue
Vol. 14, no. 17
p. 7953

Abstract

Read online

The convolutional neural network (CNN) has been widely applied in medical image segmentation due to its outstanding nonlinear expression ability. However, applications of CNN are often limited by the receptive field, preventing it from modeling global dependencies. The recently proposed transformer architecture, which uses a self-attention mechanism to model global context relationships, has achieved promising results. Swin-Unet is a Unet-like simple transformer semantic segmentation network that combines the dominant feature of both the transformer and Unet. Even so, Swin-Unet has some limitations, such as only learning single-scale contextual features, and it lacks inductive bias and effective multi-scale feature selection for processing local information. To solve these problems, the Residual Local induction bias-Unet (RL-Unet) algorithm is proposed in this paper. First, the algorithm introduces a local induction bias module into the RLSwin-Transformer module and changes the multi-layer perceptron (MLP) into a residual multi-layer perceptron (Res-MLP) module to model local and remote dependencies more effectively and reduce feature loss. Second, a new densely connected double up-sampling module is designed, which can further integrate multi-scale features and improve the segmentation accuracy of the target region. Third, a novel loss function is proposed that can significantly enhance the performance of multiple scales segmentation and the segmentation results for small targets. Finally, experiments were conducted using four datasets: Synapse, BraTS2021, ACDC, and BUSI. The results show that the performance of RL-Unet is better than that of Unet, Swin-Unet, R2U-Net, Attention-Unet, and other algorithms. Compared with them, RL-Unet produces significantly a lower Hausdorff Distance at 95% threshold (HD95) and comparable Dice Similarity Coefficient (DSC) results. Additionally, it exhibits higher accuracy in segmenting small targets.

Keywords