Sensors (Jul 2022)

Low-Light Image Enhancement via Retinex-Style Decomposition of Denoised Deep Image Prior

  • Xianjie Gao,
  • Mingliang Zhang,
  • Jinming Luo

DOI
https://doi.org/10.3390/s22155593
Journal volume & issue
Vol. 22, no. 15
p. 5593

Abstract

Read online

Low-light images are a common phenomenon when taking photos in low-light environments with inappropriate camera equipment, leading to shortcomings such as low contrast, color distortion, uneven brightness, and high loss of detail. These shortcomings are not only subjectively annoying but also affect the performance of many computer vision systems. Enhanced low-light images can be better applied to image recognition, object detection and image segmentation. This paper proposes a novel RetinexDIP method to enhance images. Noise is considered as a factor in image decomposition using deep learning generative strategies. The involvement of noise makes the image more real, weakens the coupling relationship between the three components, avoids overfitting, and improves generalization. Extensive experiments demonstrate that our method outperforms existing methods qualitatively and quantitatively.

Keywords