Energies (Aug 2024)

Experimental Erosion Flow Pattern Study of Pelton Runner Buckets Using a Non-Recirculating Test Rig

  • Baig Mirza Umar,
  • Zhengwei Wang,
  • Sailesh Chitrakar,
  • Bhola Thapa,
  • Xingxing Huang,
  • Ravi Poudel,
  • Aaditya Karna

DOI
https://doi.org/10.3390/en17164006
Journal volume & issue
Vol. 17, no. 16
p. 4006

Abstract

Read online

Sediment erosion of hydraulic turbines is a significant challenge in hydropower plants in mountainous regions like the European Alps, the Andes, and the Himalayan region. The erosive wear of Pelton runner buckets is influenced by a variety of factors, including the size, hardness, and concentration of silt particles; the velocity of the flow and impingement angle of the jet; the properties of the base material; and the operating hours of the turbine. This research aims to identify the locations most susceptible to erosion and to elucidate the mechanisms of erosion propagation in two distinct designs of Pelton runner buckets. The Pelton runner buckets were subjected to static condition tests with particle sizes of 500 microns and a concentration of 14,000 mg/L. The buckets were coated with four layers of paint, sequentially applied in red, yellow, green, and blue. The two Pelton buckets, D1 and D2, were evaluated for their erosion resistance properties. D2 demonstrated superior erosion resistance, attributed to its geometrical features and material composition, lower erosion rates, less material loss, and improved surface integrity compared with D1. This difference is primarily attributed to factors such as the splitter’s thickness, the jet’s impact angle, the velocity at which particles strike, and the concentration of sand. D2 exhibits a great performance in terms of erosion resistance among the two designs. This study reveals that the angle of jet impingement influences erosion progression and material loss, which is important to consider during a Pelton turbine’s design and operating conditions.

Keywords