Nature Communications (Feb 2018)

A community approach to mortality prediction in sepsis via gene expression analysis

  • Timothy E. Sweeney,
  • Thanneer M. Perumal,
  • Ricardo Henao,
  • Marshall Nichols,
  • Judith A. Howrylak,
  • Augustine M. Choi,
  • Jesús F. Bermejo-Martin,
  • Raquel Almansa,
  • Eduardo Tamayo,
  • Emma E. Davenport,
  • Katie L. Burnham,
  • Charles J. Hinds,
  • Julian C. Knight,
  • Christopher W. Woods,
  • Stephen F. Kingsmore,
  • Geoffrey S. Ginsburg,
  • Hector R. Wong,
  • Grant P. Parnell,
  • Benjamin Tang,
  • Lyle L. Moldawer,
  • Frederick E. Moore,
  • Larsson Omberg,
  • Purvesh Khatri,
  • Ephraim L. Tsalik,
  • Lara M. Mangravite,
  • Raymond J. Langley

DOI
https://doi.org/10.1038/s41467-018-03078-2
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 10

Abstract

Read online

Sepsis is characterized by deregulated host response to infection. Efficient therapies are still needed but a limitation for sepsis treatment is the heterogeneity in patients. Here Sweeney et al. generate prognostic models based on gene expression to improve risk stratification classification and prediction for 30-day mortality of patients.