International Journal of Nanomedicine (Oct 2011)

Immune complement activation is attenuated by surface nanotopography

  • Elwing H,
  • Lausmaa J,
  • Ohrlander M,
  • Berglin M,
  • Lundgren A,
  • Hulander M

Journal volume & issue
Vol. 2011, no. default
pp. 2653 – 2666

Abstract

Read online

Mats Hulander1, Anders Lundgren1, Mattias Berglin1, Mattias Ohrlander2, Jukka Lausmaa3,4, Hans Elwing1 1Department of Cell and Molecular Biology/Interface Biophysics, University of Gothenburg, Medicinaregatan 9E, Gothenburg, 2Bactiguard AB, Stockholm, 3SP Technical Research Institute, Boras, 4Biomatcell, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Abstract: The immune complement (IC) is a cell-free protein cascade system, and the first part of the innate immune system to recognize foreign objects that enter the body. Elevated activation of the system from, for example, biomaterials or medical devices can result in both local and systemic adverse effects and eventually loss of function or rejection of the biomaterial. Here, the researchers have studied the effect of surface nanotopography on the activation of the IC system. By a simple nonlithographic process, gold nanoparticles with an average size of 58 nm were immobilized on a smooth gold substrate, creating surfaces where a nanostructure is introduced without changing the surface chemistry. The activation of the IC on smooth and nanostructured surfaces was viewed with fluorescence microscopy and quantified with quartz crystal microbalance with dissipation monitoring in human serum. Additionally, the ability of pre-adsorbed human immunoglobulin G (IgG) (a potent activator of the IC) to activate the IC after a change in surface hydrophobicity was studied. It was found that the activation of the IC was significantly attenuated on nanostructured surfaces with nearly a 50% reduction, even after pre-adsorption with IgG. An increase in surface hydrophobicity blunted this effect. The possible role of the curvature of the nanoparticles for the orientation of adsorbed IgG molecules, and how this can affect the subsequent activation of the IC, are discussed. The present findings are important for further understanding of how surface nanotopography affects complex protein adsorption, and for the future development of biomaterials and blood-contacting devices. Keywords: nanostructure, protein adsorption, gold nanoparticles, QCM-D, IgG, innate immunity