Ecotoxicology and Environmental Safety (Sep 2024)
Influence of algal-extracellular polymeric substances (EPS) on the pristine and combined toxicity of TiO2 NPs and PSNPs in Artemia salina: Eco-corona enhances the toxic effects
Abstract
The study on the influence of Natural Organic Matter (NOM) over the individual and combined effects of different nanomaterials on marine species is pertinent. The current study explores the role of Extracellular Polymeric Substances (EPS) in influencing the individual and combined toxic effects of polystyrene nanoplastics (PSNPs) viz. aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs and TiO2 NPs in the marine crustacean, Artemia salina. A. salina was interacted with pristine PSNPs, pristine TiO2 NPs, EPS incubated PSNPs, EPS incubated TiO2 NPs, binary mixture of PSNPs and TiO2 NPs, and EPS adsorbed binary mixture of PSNPs and TiO2 NPs for 48 h. The present study proves that, when compared to the pristine toxicity of PSNPs and TiO2 NPs, the coexposure of TiO2 NPs with PSNPs resulted in increased toxicity. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. It was observed that with an increase in the hydrodynamic diameter of the particles, the mortality, oxidative stress, and ingestion of the NMs by A. salina increased. The uptake of Ti by A. salina from 8 mg/L TiO2 NPs, EPS adsorbed 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs and the EPS adsorbed mixture of 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs was observed to be 0.043, 0.047, 0.186, and 0.307 mg/g of A. salina. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. The major outcomes from the current study highlight the role of EPS in exacerbating the toxicity of NMs in marine crustaceans.