Journal of Lipid Research (Sep 1975)

Interaction of rat plasma very low density lipoprotein with lipoprotein lipase-rich (postheparin) plasma.

  • S Eisenberg,
  • D Rachmilewitz

Journal volume & issue
Vol. 16, no. 5
pp. 341 – 351

Abstract

Read online

Incubation of 125I-labeled very low density lipoprotein (VLDL) with lipoprotein lipase-rich (postheparin) plasma obtained from intact or supradiaphragmatic rats resulted in the transfer of more than 80% of apoprotein C from VLDL to high density lipoprotein (HDL), whereas apoprotein B was associated with lipoprotein of density less than 1.019 g/ml (intermediate lipoprotein). The transfer of 125I-labeled apoprotein C from VLDL to HDL increased with time and decreased in proportion to the amount of VLDL in the incubation system. A relationship was established between the content of triglycerides and apoprotein C in VLDL, whereas the amount of apoprotein C in VLDL was independent of that of other apoproteins, especially apoprotein B. The injection of heparin to rats preinjected with 125I-labeled VLDL caused apoprotein interconversions similar to those observed in vitro. The intermediate lipoprotein was relatively rich in apoprotein B, apoprotein VS-2, cholesterol, and phospholipids and poor in triglycerides and apoprotein C. The mean diameter of intermediate lipoprotein was 269 A (compared with 427 A, the mean Sf rate was 30.5 (compared with 115), and the mean weight was 7.0 X 10(6) daltons (compared with 23.1 X 10(6)). From these data it was possible to calculate the mass of lipids and apoproteins in single lipoprotein particles. The content of apoprotein B in both particles was virtually identical, 0.7 X 10(6) daltons. The relative amount of all other constituents in intermediate lipoprotein was lower than in VLDL: triglycerides, 22%; free cholesterol, 37%; esterified cholesterol, 68%; phospholipids, 41%; apoprotein C, 7%, and VS-2 apoprotein, 60%. The data indicate that (a) one and only one intermediate lipoprotein is formed from each VLDL particle, and (b) during the formation of the intermediate lipoprotein all lipid and apoprotein components other than apoprotein B leave the density range of VLDL to a varying degree. Whether these same changes occur during the clearance of VLDL in vivo is yet to be established.