Water (Sep 2024)

Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review

  • Umar Farooq,
  • Muhammad Ajmal,
  • Shicheng Li,
  • James Yang,
  • Sana Ullah

DOI
https://doi.org/10.3390/w16172547
Journal volume & issue
Vol. 16, no. 17
p. 2547

Abstract

Read online

The soil water retention curve (SWRC) is a vital soil property used to evaluate the soil’s water holding capacity, a critical factor in various applications such as determining soil water availability for plants, soil conservation and management, climate change adaptation, and mitigation of flood risks. Estimating SWRC directly in the field and laboratory is a time-consuming and laborious process and requires numerous instruments and measurements at a specific location. In this context, various estimation approaches have been developed, including pedotransfer functions (PTFs), over the past three decades to estimate soil water retention and its associated properties. Despite the efficiencies, PTFs and semi-physical approach-based models often have several limitations, particularly in the dry range of the SWRC. PTFs-based modeling has become a key research topic due to readily available soil data and cost-effective methods for deriving essential soil parameters, which enable more efficient decision-making in sustainable land-use management. Therefore, advancement and adjustment are necessary for reliable estimations of the SWRC from readily available data. This article reviews the evaluation of the current and past PTFs for estimating the SWRC. This study aims to evaluate PTF techniques and semi-physical approaches based on soil texture, bulk density, porosity, and other related factors. Additionally, it also assesses the performance and limitations of various common semi-physical models proposed and developed by Arya and Paris, Haverkamp and Parlange, the Modified Kovács model by Aubertin et al., Chang and Cheng, Meskini-Vishkaee et al., Vidler et al., and Zhai et al. This assessment will be effective for researchers in this field and provide valuable insight into the importance of new PTFs for modeling SWRC.

Keywords