Scientific Data (Jun 2024)

Daily station-level records of air temperature, snow depth, and ground temperature in the Northern Hemisphere

  • Vinh Ngoc Tran,
  • Wenbo Zhou,
  • Taeho Kim,
  • Valeriy Mazepa,
  • Victor Valdayskikh,
  • Valeriy Y. Ivanov

DOI
https://doi.org/10.1038/s41597-024-03483-x
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Air temperature (Ta), snow depth (Sd), and soil temperature (Tg) are crucial variables for studying the above- and below-ground thermal conditions, especially in high latitudes. However, in-situ observations are frequently sparse and inconsistent across various datasets, with a significant amount of missing data. This study has assembled a comprehensive dataset of in-situ observations of Ta, Sd, and Tg for the Northern Hemisphere (higher than 30°N latitude), spanning 1960–2021. This dataset encompasses metadata and daily data time series for 27,768, 32,417, and 659 gages for Ta, Sd, and Tg, respectively. Using the ERA5-Land reanalysis data product, we applied deep learning methodology to reconstruct the missing data that account for 54.5%, 59.3%, and 74.3% of Ta, Sd, and Tg daily time series, respectively. The obtained high temporal resolution dataset can be used to better understand physical phenomena and relevant mechanisms, such as the dynamics of land-surface-atmosphere energy exchange, snowpack, and permafrost.