Remote Sensing (Nov 2024)

Modeling the Land Surface Phenological Responses of Dominant Miombo Tree Species to Climate Variability in Western Tanzania

  • Siwa E. Nkya,
  • Deo D. Shirima,
  • Robert N. Masolele,
  • Henrik Hedenas,
  • August B. Temu

DOI
https://doi.org/10.3390/rs16224261
Journal volume & issue
Vol. 16, no. 22
p. 4261

Abstract

Read online

Species-level phenology models are essential for predicting shifts in tree species under climate change. This study quantified phenological differences among dominant miombo tree species and modeled seasonal variability using climate variables. We used TIMESAT version 3.3 software and the Savitzky–Golay filter to derive phenology metrics from bi-monthly PlanetScope Normalized Difference Vegetation Index (NDVI) data from 2017 to 2024. A repeated measures Analysis of Variance (ANOVA) assessed differences in phenology metrics between species, while a regression analysis modeled the Start of Season (SOS) and End of Season (EOS). The results show significant seasonal and species-level variations in phenology. Brachystegia spiciformis differed from other species in EOS, Length of Season (LOS), base value, and peak value. Surface solar radiation and skin temperature one month before SOS were key predictors of SOS, with an adjusted R-squared of 0.90 and a Root Mean Square Error (RMSE) of 13.47 for Brachystegia spiciformis. SOS also strongly predicted EOS, with an adjusted R-squared of 1 and an RMSE of 3.01 for Brachystegia spiciformis, indicating a shift in the growth cycle of tree species due to seasonal variability. These models provide valuable insights into potential phenological shifts in miombo species due to climate change.

Keywords