International Journal of Pharmaceutics: X (Jun 2024)

Fabrication and application of targeted ciprofloxacin nanocarriers for the treatment of chronic bacterial prostatitis

  • Sahar I. Mohammad,
  • Basmah Nasser Aldosari,
  • Magda M. Mehanni,
  • Ahmed O. El-Gendy,
  • Walaa G. Hozayen,
  • Obaid Afzal,
  • Randa Mohammed Zaki,
  • Ossama M. Sayed

Journal volume & issue
Vol. 7
p. 100247

Abstract

Read online

Pathogenic bacteria cause chronic bacterial prostatitis (CBP). CPB is characterized by urinary tract infection and persistence of pathogenic bacteria in prostatic secretion. Owing to poor blood supply to the prostate gland and limited drug penetration, CBP treatment is difficult. Transferosomes are ultradeformable vesicles for nanocarrier applications, which have become an important area of nanomedicine. Such carriers are specifically targeted to the pathological area to provide maximum therapeutic efficacy. It consists of a lipid bilayer soybean lecithin phosphatidylcholine (PC), an edge activator Tween 80 with various ratios, and a chloroform/methanol core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or among the lipid bilayer. Due to their exceptional flexibility, which enables them to squeeze themselves through narrow pores that are significantly smaller than their size, they can be a solution. One formulation (Cipro5 PEG) was selected for further in vitro analysis and was composed of phosphatidylcholine (PC), Tween 80, and polyethylene glycol-6 stearate (PEG-6 stearate) in a ratio of 3:3:1 in a chloroform/methanol mixture (1:2 v/v). In vitro, the results showed that PEGylated transferosomes had faster drug release, higher permeation, and increased bioavailability. The transferosomes were quantified with a particle size of 202.59 nm, a zeta potential of-49.38 mV, and a drug entrapment efficiency of 80.05%. The aim of this study was to investigate drug targeting. Therefore, Monoclonal antibody IgG was coupled with Cipro5 PEG, which has specificity and selectivity for conjugated nanoparticles. In vivo, a total of twenty-five adult Wistar rats were obtained and randomly divided into 5 groups, each of 5 rats at random: the control group, blank group, positive control group, Cipro 5PEG group, and Cipro 5PEG coupled with IgG antibody group. The cytokines levels (IL-1β, IL-8, and TNF-α) in the serum were detected by analysis kits. Compared with the control group, treatment with Cipro 5PEG coupled with the IgG antibody could significantly inhibit cytokines, according to histological analysis. Cipro 5PEG, coupled with the IgG antibody group, reduced prostate tissue inflammation. Hence, our results show a promising approach to delivering antibiotics for the targeted therapy of CBP.

Keywords