Journal of Dairy Science (Feb 2022)
Genome-wide association study using haplotype libraries and repeated-measures model to identify candidate genomic regions for stillbirth in Holstein cattle
Abstract
ABSTRACT: Reduced fertility is one of the main causes of economic losses on dairy farms, resulting in economic losses estimated at $938 per stillbirth case in Holstein herds. The identification of genomic regions associated with stillbirth could help to develop better management and breeding strategies aimed to reduce the frequency of undesirable gestation outcomes. Here, 10,570 cows and 50,541 birth records were used to perform a haplotype-based GWAS. A total of 41 significantly associated pseudo-SNPs (haplotypes within haplotype blocks converted to a binary classification) were identified after Bonferroni adjustment for multiple tests. A total of 117 positional candidate genes were annotated within or close (in a 200-kb interval) to significant pseudo-SNPs (haplotype blocks). The guilt-by-association functional prioritization identified 31 potential functional candidate genes for reproductive performance out of the 117 positional candidate genes annotated. These genes play crucial roles in biological processes associated with pregnancy persistence, fetus development, immune response, among others. These results helped us to better understand the genetic basis of stillbirth in dairy cattle and may be useful for the prediction of stillbirth in Holstein cattle, helping to reduce the related economic losses caused by this phenotype.