Nature Communications (Feb 2022)

Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning

  • Yvonne M. Mueller,
  • Thijs J. Schrama,
  • Rik Ruijten,
  • Marco W. J. Schreurs,
  • Dwin G. B. Grashof,
  • Harmen J. G. van de Werken,
  • Giovanna Jona Lasinio,
  • Daniel Álvarez-Sierra,
  • Caoimhe H. Kiernan,
  • Melisa D. Castro Eiro,
  • Marjan van Meurs,
  • Inge Brouwers-Haspels,
  • Manzhi Zhao,
  • Ling Li,
  • Harm de Wit,
  • Christos A. Ouzounis,
  • Merel E. P. Wilmsen,
  • Tessa M. Alofs,
  • Danique A. Laport,
  • Tamara van Wees,
  • Geoffrey Kraker,
  • Maria C. Jaimes,
  • Sebastiaan Van Bockstael,
  • Manuel Hernández-González,
  • Casper Rokx,
  • Bart J. A. Rijnders,
  • Ricardo Pujol-Borrell,
  • Peter D. Katsikis

DOI
https://doi.org/10.1038/s41467-022-28621-0
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Developing predictive methods to identify patients with high risk of severe COVID-19 disease is of crucial importance. Authors show here that by measuring anti-SARS-CoV-2 antibody and cytokine levels at the time of hospital admission and integrating the data by unsupervised hierarchical clustering/machine learning, it is possible to predict unfavourable outcome.