Sensors (Jan 2020)

Distributed Fiber Optic Sensing for Real-Time Monitoring of Gas in Riser during Offshore Drilling

  • Giuseppe Feo,
  • Jyotsna Sharma,
  • Dmitry Kortukov,
  • Wesley Williams,
  • Toba Ogunsanwo

DOI
https://doi.org/10.3390/s20010267
Journal volume & issue
Vol. 20, no. 1
p. 267

Abstract

Read online

Effective well control depends on the drilling teams’ knowledge of wellbore flow dynamics and their ability to predict and control influx. Unfortunately, detection of a gas influx in an offshore environment is particularly challenging, and there are no existing datasets that have been verified and validated for gas kick migration at full-scale annular conditions. This study bridges this gap and presents pioneering research in the application of fiber optic sensing for monitoring gas in riser. The proposed sensing paradigm was validated through well-scale experiments conducted at Petroleum Engineering Research & Technology Transfer lab (PERTT) facility at Louisiana State University (LSU), simulating an offshore marine riser environment with its larger than average annular space and mud circulation capability. The experimental setup instrumented with distributed fiber optic sensors and pressure/temperature gauges provides a physical model to study the dynamic gas migration in full-scale annular conditions. Current kick detection methods primarily utilize surface measurements and do not always reliably detect a gas influx. The proposed application of distributed fiber optic sensing overcomes this key limitation of conventional kick detection methods, by providing real-time distributed downhole data for accurate and reliable monitoring. The two-phase flow experiments conducted in this research provide critical insights for understanding the flow dynamics in offshore drilling riser conditions, and the results provide an indication of how quickly gas can migrate in a marine riser scenario, warranting further investigation for the sake of effective well control.

Keywords