Nanomaterials (Mar 2020)

Structural Modification of Nanomicelles through Phosphatidylcholine: The Enhanced Drug-Loading Capacity and Anticancer Activity of Celecoxib-Casein Nanoparticles for the Intravenous Delivery of Celecoxib

  • Liuli Xv,
  • Xinxin Qian,
  • Yan Wang,
  • Chenghuan Yu,
  • Dingkui Qin,
  • Yahui Zhang,
  • Peng Jin,
  • Qizhen Du

DOI
https://doi.org/10.3390/nano10030451
Journal volume & issue
Vol. 10, no. 3
p. 451

Abstract

Read online

This study aims to stabilize loaded celecoxib (CX) by modifying the structure of casein nanoparticles through phosphatidylcholine. The results show that Egg yolk phosphatidylcholine PC98T (PC) significantly increased the stability of CX-PC-casein nanoparticles (NPs) (192.6 nm) from 5 min (CX-β-casein-NPs) to 2.5 h at 37 °C. In addition, the resuspended freeze-dried NPs (202.4 nm) remained stable for 2.5 h. Scanning electron microscopy indicated that PC may block the micropore structures in nanoparticles by ultrasonic treatment and hence improve the physicochemical stability of CX-PC-casein-NPs. The stability of the NPs was positively correlated with their inhibiting ability for human malignant melanoma A375 cells. The structural modification of CX-PC-casein-NPs resulted in an increased intracellular uptake of CX by 2.4 times than that of the unmodified ones. The pharmacokinetic study showed that the Area Under Curve (AUC) of the CX-PC-casein-NPs was 2.9-fold higher in rats than that of the original casein nanoparticles. When CX-PC-casein-NPs were intravenously administrated to mice implanted with A375 tumors (CX dose = 16 mg/kg bodyweight), the tumor inhibition rate reached 56.2%, which was comparable to that of paclitaxel (57.3%) at a dose of 4 mg/kg bodyweight. Our results confirm that the structural modification of CX-PC-casein-NPs can effectively prolong the remaining time of specific drugs, and may provide a potential strategy for cancer treatment.

Keywords