AIMS Mathematics (Sep 2023)
Numerical simulation and analysis of fractional-order Phi-Four equation
Abstract
This paper introduces a novel numerical approach for tackling the nonlinear fractional Phi-four equation by employing the Homotopy perturbation method (HPM) and the Adomian decomposition method (ADM), augmented by the Shehu transform. These established techniques are adept at addressing nonlinear differential equations. The equation's complexity is reduced by applying the Shehu Transform, rendering it amenable to solutions via HPM and ADM. The efficacy of this approach is underscored by conclusive results, attesting to its proficiency in solving the equation. With extensive ramifications spanning physics and engineering domains like fluid dynamics, heat transfer, and mechanics, the proposed method emerges as a precise and efficient tool for resolving nonlinear fractional differential equations pervasive in scientific and engineering contexts. Its potential extends to analogous equations, warranting further investigation to unravel its complete capabilities.
Keywords