Data in Brief (Jun 2021)
Dataset on structure and physical properties of stable diatomic systems based on van der Waals density functional method
Abstract
With the influence of progress in the materials informatics, development of fundamental database has been attracting growing interest. The bonding between atoms is essential component of all kinds of materials and govern their structure, stability, and properties. When we try to understand a material by breaking it down into microscopic components, bonding of diatomic system is the most fundamental. In the field of spectroscopy, diatomic molecular spectroscopy data has been studied well, and the diatomic molecular spectroscopy database [1] has been constructed recently. Concerning electronic structure, however, there is no easily accessible database of diatomic system.In order to develop a database of diatomic systems, it is important to consider adequate interaction. In addition to covalent bonding, van der Waals (vdW) interaction is also known to play an essential role especially in describing weak bonding systems such as noble gas dimers, atomic or molecular absorption, and layered materials. Thus, vdW interaction must be considered to develop database of diatomic systems so that it can be used for general purposes. One of its theoretical implementations is vdW density functional (vdW-DF) method [2], which has been developed within the framework of density functional theory 3 (DFT) and has been showing its effectiveness as general-purpose method.In this data article, we provide a vdW-DF-based calculation dataset focusing on diatomic systems. All diatomic systems containing atoms from H (Z = 1) to Ra (Z = 88) were considered, and stable structures and properties of more than 2,900 stable diatomic systems has been calculated correctly. This cyclopedic dataset of diatomic systems with consideration of vdW interaction can be useful building blocks for understanding, describing, and predicting interaction of atoms.