Applied Sciences (Dec 2023)

Designing Sustainable Flexible Manufacturing Cells with Multi-Objective Optimization Models

  • Emine Bozoklar,
  • Ebru Yılmaz

DOI
https://doi.org/10.3390/app14010203
Journal volume & issue
Vol. 14, no. 1
p. 203

Abstract

Read online

Having sustainable and flexible features is crucial for manufacturing companies considering the increasing competition in the globalized world. This study considers three aspects of sustainability, namely economic, social, and environmental factors, in the design of flexible manufacturing cells. Three different multi-objective integer mathematical programming models were developed with the objective of minimizing the costs associated with carbon emissions, inter-cellular movements, machine processing, machine replacement, worker training, and additional salary (bonus). Simultaneously, these models aim to minimize the carbon emission amount of the cells within the environmental dimension scope. The developed models are a goal programming model, an epsilon constraint method, and an augmented epsilon constraint (AUGMECON) method. In these models, alternative routes of parts are considered while assigning parts to machines. The results are obtained using the LINGO 20.0 optimization program with a developed illustrative example. The obtained results are tested and compared by performing sensitivity analyses. The sensitivity analyses include examinations of the effects of changes in part demands, machine capacity values, carbon limit value, and the maximum number of workers in cells.

Keywords