Mathematics (Jul 2021)
On Progressive Censored Competing Risks Data: Real Data Application and Simulation Study
Abstract
Competing risks are frequently overlooked, and the event of interest is analyzed with conventional statistical techniques. In this article, we consider the analysis of bi-causes of failure in the context of competing risk models using the extension of the exponential distribution under progressive Type-II censoring. Maximum likelihood estimates for the unknown parameters via the expectation-maximization algorithm are obtained. Moreover, the Bayes estimates of the unknown parameters are approximated using Tierney-Kadane and MCMC techniques. Interval estimates using Bayesian and classical techniques are also considered. Two real data sets are investigated to illustrate the different estimation methods, and to compare the suggested model with Weibull distribution. Furthermore, the estimation methods are compared through a comprehensive simulation study.
Keywords