Heliyon (Feb 2023)

Screening and identification of multiple abiotic stress responsive candidate genes based on hybrid-sequencing in Vicia sativa

  • Jia Wei,
  • Bo Luo,
  • Shiyi Kong,
  • Wenxian Liu,
  • Chuanjie Zhang,
  • Zhenwu Wei,
  • Xueyang Min

Journal volume & issue
Vol. 9, no. 2
p. e13536

Abstract

Read online

Common vetch is an important leguminous forage for both livestock fodder and green manure and has a tremendous latent capacity in a sustainable agroecosystem. In the present study, a comprehensive transcriptome analysis of the aboveground leaves and underground roots of common vetch under multiple abiotic stress treatments, including NaCl, drought, cold, and cold drought, was performed using hybrid-sequencing technology, i. e. single-molecule real-time sequencing technology (SMRT) and supplemented by next-generation sequencing (NGS) technology. A total of 485,038 reads of insert (ROIs) with a mean length of 2606 bp and 228,261 full-length nonchimeric (FLNC) reads were generated. After deduplication, 39,709 transcripts were generated. Of these transcripts, we identified 1059 alternative splicing (AS) events, 17,227 simple sequence repeats (SSRs), and 1647 putative transcription factors (TFs). Furthermore, 640 candidates long noncoding RNAs (lncRNAs) and 28,256 complete coding sequences (CDSs) were identified. In gene annotation analyses, a total of 38,826 transcripts (97.78%) were annotated in eight public databases. Finally, seven multiple abiotic stress-responsive candidate genes were obtained through gene expression, annotation information, and protein-protein interaction (PPI) networks. Our research not only enriched the structural information of FL transcripts in common vetch, but also provided useful information for exploring the molecular mechanism of multiple abiotic stress tolerance between aboveground and underground tissues in common vetch and related legumes.

Keywords