Системи озброєння і військова техніка (Jun 2020)

Model of simulation of the process of formation of functional surfaces of micro-opto-electro-mechanical systems’ components

  • І.Ш. Невлюдов,
  • О.О. Чала,
  • О.І. Филипенко,
  • І.В. Боцман

DOI
https://doi.org/10.30748/soivt.2020.62.10
Journal volume & issue
no. 2(62),
pp. 73 – 82

Abstract

Read online

The subject of the article is to establish the relationships between the parameters of formation the functional surfaces of the substrates of micro-opto-electro-mechanical systems’ (MOEMS) components and their physical and technological parameters. Objectives: to increase the reliability and reproducibility of the received information, reduce the complexity of the technological process of forming, by modeling the dependences of the ratios of physical and technological parameters of forming the functional surfaces of the substrates of MOEMS components for the forming process. The methods are used: methods of experiment planning and computer processing of experimental data, mathematical models, digital computer modeling of technological processes. The following results were obtained: a mathematical model was proposed, which was used to model the influence of physical and technological parameters of the functional surfaces of the substrates of MOEMS components on their formation, with the receipt of prototypes. The results can be used in the development of technological processes of production, as substrates of functional components of MOEMS, and other functional elements for various technological purposes. A mathematical model is obtained, which allows predicting the degree of influence of physical and technological parameters of the technological process on the parameters of formation of functional surfaces of substrates of MOEMS components. Conclusions. The scientific novelty of the results is as follows: a mathematical model that has found practical implementation for computer digital modeling in the development of technological processes for the production of functional surfaces of substrates of MOEMS components is proposed, in which, unlike the existing ones, it is possible to predict the degree of influence of physical substrates of MOEMS components, which allows to plan the process of formation, increase the reproducibility of results and reduce the complexity of the technological process.

Keywords