Econometrics (Jan 2016)

Forecasting Value-at-Risk under Different Distributional Assumptions

  • Manuela Braione,
  • Nicolas K. Scholtes

DOI
https://doi.org/10.3390/econometrics4010003
Journal volume & issue
Vol. 4, no. 1
p. 3

Abstract

Read online

Financial asset returns are known to be conditionally heteroskedastic and generally non-normally distributed, fat-tailed and often skewed. These features must be taken into account to produce accurate forecasts of Value-at-Risk (VaR). We provide a comprehensive look at the problem by considering the impact that different distributional assumptions have on the accuracy of both univariate and multivariate GARCH models in out-of-sample VaR prediction. The set of analyzed distributions comprises the normal, Student, Multivariate Exponential Power and their corresponding skewed counterparts. The accuracy of the VaR forecasts is assessed by implementing standard statistical backtesting procedures used to rank the different specifications. The results show the importance of allowing for heavy-tails and skewness in the distributional assumption with the skew-Student outperforming the others across all tests and confidence levels.

Keywords