JMIR Research Protocols (May 2024)

Finite Element Analysis of Pelvic Floor Biomechanical Models to Elucidate the Mechanism for Improving Urination and Defecation Dysfunction in Older Adults: Protocol for a Model Development and Validation Study

  • Rui Wang,
  • Guangtian Liu,
  • Liwei Jing,
  • Jing Zhang,
  • Chenyang Li,
  • Lichao Gong

DOI
https://doi.org/10.2196/56333
Journal volume & issue
Vol. 13
p. e56333

Abstract

Read online

BackgroundThe population is constantly aging, and most older adults will experience many potential physiological changes as they age, leading to functional decline. Urinary and bowel dysfunction is the most common obstacle in older people. At present, the analysis of pelvic floor histological changes related to aging has not been fully elucidated, and the mechanism of improving intestinal control ability in older people is still unclear. ObjectiveThe purpose of this study is to describe how the finite element method will be used to understand the mechanical characteristics of and physiological changes in the pelvic cavity during the rehabilitation process, providing theoretical support for the mechanism for improving urination and defecation dysfunction in older individuals. MethodsWe will collect magnetic resonance imaging (MRI) and computed tomography (CT) data of the pelvic cavity of one male and one female volunteer older than 60 years and use the finite element method to construct a 3D computer simulation model of the pelvic cavity. By simulating different physiological states, such as the Valsalva maneuver and bowel movement, we will verify the accuracy of the constructed model, investigate the effects of different neuromuscular functional changes, and quantify the impact proportions of the pelvic floor muscle group, core muscle group, and sacral nerve. ResultsAt present, we have registered the study in the Chinese Clinical Trial Registry and collected MRI and CT data for an older male and an older female patient. Next, the construction and analysis of the finite element model will be accomplished according to the study plan. We expect to complete the construction and analysis of the finite element model by July 2024 and publish the research results by October 2025. ConclusionsOur study will build finite element models of the pelvic floor of older men and older women, and we shall elucidate the relationship between the muscles of the pelvic floor, back, abdomen, and hips and the ability of older adults to control bowel movements. The results of this study will provide theoretical support for elucidating the mechanism for improving urination and defecation dysfunction through rehabilitation. Trial RegistrationChinese Clinical Trial Registry ChiCTR2400080749; https://www.chictr.org.cn/showproj.html?proj=193428 International Registered Report Identifier (IRRID)DERR1-10.2196/56333