Stem Cell Research & Therapy (Oct 2021)

Synergistic stimulation of osteoblast differentiation of rat mesenchymal stem cells by leptin and 25(OH)D3 is mediated by inhibition of chaperone-mediated autophagy

  • Qiting He,
  • Ruixi Qin,
  • Julie Glowacki,
  • Shuanhu Zhou,
  • Jie Shi,
  • Shaoyi Wang,
  • Yuan Gao,
  • Lei Cheng

DOI
https://doi.org/10.1186/s13287-021-02623-z
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Vitamin D is important for the mineralization of bones by stimulating osteoblast differentiation of bone marrow mesenchymal stem cells (BMMSCs). BMMSCs are a target of vitamin D action, and the metabolism of 25(OH)D3 to biologically active 1α,25(OH)2D3 in BMMSCs promotes osteoblastogenesis in an autocrine/paracrine manner. Our previous study with human BMMSCs showed that megalin is required for the 25(OH)D3-DBP complex to enter cells and for 25(OH)D3 to stimulate osteoblast differentiation in BMMSCs. Furthermore, we reported that leptin up-regulates megalin in those cells. Leptin is a known inhibitor of PI3K/AKT-dependent chaperone-mediated autophagy (CMA). In this study, we tested the hypothesis that leptin acts synergistically with 25(OH)D3 to promote osteoblastogenesis in rat BMMSCs by a mechanism that entails inhibition of PI3K/AKT-dependent CMA. Methods BMMSCs were isolated from rat bone marrow (4-week-old male SD rats); qRT-PCR and western immunoblots or immunofluorescence were used to evaluate the expression of megalin, ALP, COL1A1, RUNX2, OSX, OSP, and CMA in rBMMSCs. The osteoblast differentiation was evaluated by ALP activity, ALP staining, and calcium deposition. The viability of rBMMSCs was assessed with the CCK-8 kit. Biosynthesis of 1α,25(OH)2D3 was measured by a Rat 1α,25(OH)2D3 ELISA Kit. Results The combination of leptin and 25(OH)D3 treatment significantly enhanced osteoblast differentiation as shown by ALP activity, ALP staining, and calcium deposition, the expression of osteogenic genes ALP, COL1A1, RUNX2, OSX, and OSP by qRT-PCR and western immunoblots in rBMMSCs. Leptin enhanced the expression of megalin and synthesis of 1α,25(OH)2D3 in rBMMSCs. Our data showed that leptin inhibited CMA activity of rBMMSCs by activating PI3K/AKT signal pathway; the ability of leptin to enhance 25(OH)D3 promoted osteoblast differentiation of rBMMSCs was weakened by the PI3K/AKT signal pathway inhibitor. Conclusions Our data reveal the mechanism by which leptin and 25(OH)D3 promote osteoblast differentiation in rBMMSCs. Leptin promoted the expression of megalin by inhibiting CMA, increased the utilization of 25(OH)D3 by rBMMSCs, and enhanced the ability of 25(OH)D3 to induce osteoblast differentiation of rBMMSCs. PI3K/AKT is at least partially involved in the regulation of CMA. These data indicate the importance of megalin in BMMSCs for vitamin D’s role in skeletal health.

Keywords