BMC Genomics (Dec 2012)

Meta-analytical biomarker search of EST expression data reveals three differentially expressed candidates

  • Wu Timothy H,
  • Chu Lichieh J,
  • Wang Jian-Chiao,
  • Chen Ting-Wen,
  • Tien Yin-Jing,
  • Lin Wen-Chang,
  • Ng Wailap V

DOI
https://doi.org/10.1186/1471-2164-13-S7-S12
Journal volume & issue
Vol. 13, no. Suppl 7
p. S12

Abstract

Read online

Abstract Background Researches have been conducted for the identification of differentially expressed genes (DEGs) by generating and mining of cDNA expressed sequence tags (ESTs) for more than a decade. Although the availability of public databases make possible the comprehensive mining of DEGs among the ESTs from multiple tissue types, existing studies usually employed statistics suitable only for two categories. Multi-class test has been developed to enable the finding of tissue specific genes, but subsequent search for cancer genes involves separate two-category test only on the ESTs of the tissue of interest. This constricts the amount of data used. On the other hand, simple pooling of cancer and normal genes from multiple tissue types runs the risk of Simpson's paradox. Here we presented a different approach which searched for multi-cancer DEG candidates by analyzing all pertinent ESTs in all categories and narrowing down the cancer biomarker candidates via integrative analysis with microarray data and selection of secretory and membrane protein genes as well as incorporation of network analysis. Finally, the differential expression patterns of three selected cancer biomarker candidates were confirmed by real-time qPCR analysis. Results Seven hundred and twenty three primary DEG candidates (p-value in silico predictions. Conclusions Searching digitized transcriptome using CMH enabled us to identify multi-cancer differentially expressed gene candidates. Our methodology demonstrated simultaneously analysis for cancer biomarkers of multiple tissue types with the EST data. With the revived interest in digitizing the transcriptomes by NGS, cancer biomarkers could be more precisely detected from the ESTs. The three candidates identified in this study, COL3A1, DLG3, and RNF43, are valuable targets for further evaluation with a larger sample size of normal and cancer tissue or serum samples.