Catalysts (Jul 2019)

Pyrolysis Kinetics of Hydrochars Produced from Brewer’s Spent Grains

  • Maciej P. Olszewski,
  • Pablo J. Arauzo,
  • Przemyslaw A. Maziarka,
  • Frederik Ronsse,
  • Andrea Kruse

DOI
https://doi.org/10.3390/catal9070625
Journal volume & issue
Vol. 9, no. 7
p. 625

Abstract

Read online

The current market situation shows that large quantities of the brewer’s spent grains (BSG)—the leftovers from the beer productions—are not fully utilized as cattle feed. The untapped BSG is a promising feedstock for cheap and environmentally friendly production of carbonaceous materials in thermochemical processes like hydrothermal carbonization (HTC) or pyrolysis. The use of a singular process results in the production of inappropriate material (HTC) or insufficient economic feasibility (pyrolysis), which hinders their application on a larger scale. The coupling of both processes can create synergies and allow the mentioned obstacles to be overcome. To investigate the possibility of coupling both processes, we analyzed the thermal degradation of raw BSG and BSG-derived hydrochars and assessed the solid material yield from the singular as well as the coupled processes. This publication reports the non-isothermal kinetic parameters of pyrolytic degradation of BSG and derived hydrochars produced in three different conditions (temperature-retention time). It also contains a summary of their pyrolytic char yield at four different temperatures. The obtained KAS (Kissinger−Akahira−Sunose) average activation energy was 285, 147, 170, and 188 kJ mol−1 for BSG, HTC-180-4, HTC-220-2, and HTC-220-4, respectively. The pyrochar yield for all hydrochar cases was significantly higher than for BSG, and it increased with the severity of the HTC’s conditions. The results reveal synergies resulting from coupling both processes, both in the yield and the reduction of the thermal load of the conversion process. According to these promising results, the coupling of both conversion processes can be beneficial. Nevertheless, drying and overall energy efficiency, as well as larger scale assessment, still need to be conducted to fully confirm the concept.

Keywords