Data in Brief (Apr 2022)

Dataset of ligand-controlled synthesis of CsPbBr3 nanoplatelets

  • Junsang Cho

Journal volume & issue
Vol. 41
p. 107997

Abstract

Read online

Lead halide perovskites nanocrystals have emerged as next-generation materials in the application of photovoltaics and various optoelectronics owing to the controllable optoelectronic properties (achieved through varying the dimensionality and composition of the materials). The design and control to obtain the desirable optoelectronic properties of the halide perovskite nanocrystals, thus, remain paramount importance. The synthesis and stabilization of cesium lead bromide (CsPbBr3) nanoplatelets through ligand-assisted reprecipitation protocol (LARP) can indeed enable the manipulation of the layer thickness over the resulting nanoplatelets. Herein, we have elucidated the role of ligand concentration and chain length effect on the crystal growth and mapped how these parameters affect the layer thickness (and crystal growth kinetics) of the corresponding nanoplatelets. Complex mapping the evolution of the average layer thickness of the CsPbBr3 nanoplatelets provide a detailed perspective of the crystal growth with ligand shell assembly. Transmission electron microscopy (TEM) images directly measurable for the thickness of nanoplatelets along with photoluminescence (PL) emission spectroscopy have been employed to determinate of the thickness of the nanoplatelets exhibiting thickness-dependent optical properties with different layer thickness nanoplatelets.

Keywords