Geosfera Indonesia (Jun 2020)

A New Algorithm For The Grid Cell-Based Runoff Routing Model Based on Travel Time Concept

  • Baina Afkril,
  • M. Pramono Hadi,
  • Slamet Suprayogi

DOI
https://doi.org/10.19184/geosi.v5i2.17351
Journal volume & issue
Vol. 5, no. 2
pp. 160 – 185

Abstract

Read online

The grid cell-based routing model has recently been used to simulate direct runoff hydrographs at catchment scales. This study develops a flexible event-based runoff routing algorithm to simulate a direct runoff hydrograph (DRH). The experiment was based on the spatiotemporal inputs of a hydrological data set. The flexibility is based on the time step and grid cell size applied in the original STORE-DHM. Rainfall distribution was obtained using radar data adjusted by the measured point ground, while the runoff yield was determined using the NRCS-CN method. The parameter distribution was captured in the GIS environment as raster data formats. Furthermore, it was converted into ASCII data formats for scripting the routing algorithm using Matlab programming codes. The model algorithm was tested for storm events within two small study river systems in Yogyakarta, Indonesia. One event in each catchment was selected and calibrated to the observed hydrograph, treating the Curve Number (CN) and Manning coefficient (n) values as parameter calibrations. In the end, two events were selected for validation. The proposed routing model algorithm simulates DRHs of all selected events in the study areas with excellent performance. The Nash-Sutcliffe coefficient was greater than 0.75 for all DRH during validation, and the volume bias and peak discharge error were less than 25%.

Keywords