Journal of Medical Internet Research (Sep 2024)

Using Natural Language Processing (GPT-4) for Computed Tomography Image Analysis of Cerebral Hemorrhages in Radiology: Retrospective Analysis

  • Daiwen Zhang,
  • Zixuan Ma,
  • Ru Gong,
  • Liangliang Lian,
  • Yanzhuo Li,
  • Zhenghui He,
  • Yuhan Han,
  • Jiyuan Hui,
  • Jialin Huang,
  • Jiyao Jiang,
  • Weiji Weng,
  • Junfeng Feng

DOI
https://doi.org/10.2196/58741
Journal volume & issue
Vol. 26
p. e58741

Abstract

Read online

BackgroundCerebral hemorrhage is a critical medical condition that necessitates a rapid and precise diagnosis for timely medical intervention, including emergency operation. Computed tomography (CT) is essential for identifying cerebral hemorrhage, but its effectiveness is limited by the availability of experienced radiologists, especially in resource-constrained regions or when shorthanded during holidays or at night. Despite advancements in artificial intelligence–driven diagnostic tools, most require technical expertise. This poses a challenge for widespread adoption in radiological imaging. The introduction of advanced natural language processing (NLP) models such as GPT-4, which can annotate and analyze images without extensive algorithmic training, offers a potential solution. ObjectiveThis study investigates GPT-4’s capability to identify and annotate cerebral hemorrhages in cranial CT scans. It represents a novel application of NLP models in radiological imaging. MethodsIn this retrospective analysis, we collected 208 CT scans with 6 types of cerebral hemorrhages at Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, between January and September 2023. All CT images were mixed together and sequentially numbered, so each CT image had its own corresponding number. A random sequence from 1 to 208 was generated, and all CT images were inputted into GPT-4 for analysis in the order of the random sequence. The outputs were subsequently examined using Photoshop and evaluated by experienced radiologists on a 4-point scale to assess identification completeness, accuracy, and success. ResultsThe overall identification completeness percentage for the 6 types of cerebral hemorrhages was 72.6% (SD 18.6%). Specifically, GPT-4 achieved higher identification completeness in epidural and intraparenchymal hemorrhages (89.0%, SD 19.1% and 86.9%, SD 17.7%, respectively), yet its identification completeness percentage in chronic subdural hemorrhages was very low (37.3%, SD 37.5%). The misidentification percentages for complex hemorrhages (54.0%, SD 28.0%), epidural hemorrhages (50.2%, SD 22.7%), and subarachnoid hemorrhages (50.5%, SD 29.2%) were relatively high, whereas they were relatively low for acute subdural hemorrhages (32.6%, SD 26.3%), chronic subdural hemorrhages (40.3%, SD 27.2%), and intraparenchymal hemorrhages (26.2%, SD 23.8%). The identification completeness percentages in both massive and minor bleeding showed no significant difference (P=.06). However, the misidentification percentage in recognizing massive bleeding was significantly lower than that for minor bleeding (P=.04). The identification completeness percentages and misidentification percentages for cerebral hemorrhages at different locations showed no significant differences (all P>.05). Lastly, radiologists showed relative acceptance regarding identification completeness (3.60, SD 0.54), accuracy (3.30, SD 0.65), and success (3.38, SD 0.64). ConclusionsGPT-4, a standout among NLP models, exhibits both promising capabilities and certain limitations in the realm of radiological imaging, particularly when it comes to identifying cerebral hemorrhages in CT scans. This opens up new directions and insights for the future development of NLP models in radiology. Trial RegistrationClinicalTrials.gov NCT06230419; https://clinicaltrials.gov/study/NCT06230419