Mathematics (Apr 2022)

A Comparative Study of SSA-BPNN, SSA-ENN, and SSA-SVR Models for Predicting the Thickness of an Excavation Damaged Zone around the Roadway in Rock

  • Guoyan Zhao,
  • Meng Wang,
  • Weizhang Liang

DOI
https://doi.org/10.3390/math10081351
Journal volume & issue
Vol. 10, no. 8
p. 1351

Abstract

Read online

Due to the disturbance effect of excavation, the original stress is redistributed, resulting in an excavation damaged zone around the roadway. It is significant to predict the thickness of an excavation damaged zone because it directly affects the stability of roadways. This study used a sparrow search algorithm to improve a backpropagation neural network, and an Elman neural network and support vector regression models to predict the thickness of an excavation damaged zone. Firstly, 209 cases with four indicators were collected from 34 mines. Then, the sparrow search algorithm was used to optimize the parameters of the backpropagation neural network, Elman neural network, and support vector regression models. According to the optimal parameters, these three predictive models were established based on the training set (80% of the data). Finally, the test set (20% of the data) was used to verify the reliability of each model. The mean absolute error, coefficient of determination, Nash–Sutcliffe efficiency coefficient, mean absolute percentage error, Theil’s U value, root-mean-square error, and the sum of squares error were used to evaluate the predictive performance. The results showed that the sparrow search algorithm improved the predictive performance of the traditional backpropagation neural network, Elman neural network, and support vector regression models, and the sparrow search algorithm–backpropagation neural network model had the best comprehensive prediction performance. The mean absolute error, coefficient of determination, Nash–Sutcliffe efficiency coefficient, mean absolute percentage error, Theil’s U value, root-mean-square error, and sum of squares error of the sparrow search algorithm–backpropagation neural network model were 0.1246, 0.9277, −1.2331, 8.4127%, 0.0084, 0.1636, and 1.1241, respectively. The proposed model could provide a reliable reference for the thickness prediction of an excavation damaged zone, and was helpful in the risk management of roadway stability.

Keywords