Scientific Reports (May 2024)

Optimizing hematite filter cake treatment using reducing agents

  • Osama Siddig,
  • Salaheldin Elkatatny,
  • Saad Alafnan

DOI
https://doi.org/10.1038/s41598-024-62746-0
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract In drilling operations, the formation of a filter cake is crucial for well stability, but its removal post-drilling is essential to restore rock formation productivity. This study focuses on hematite-based filter cakes and investigates factors influencing their solubility and removal, addressing a significant knowledge gap in the field. The research methodology involves examining the effects of various factors, including types and concentrations of reducing agents, temperature, particle size, and treatment duration, on the dissolution process. Notably, Nuclear Magnetic Resonance (NMR) tests are employed to assess the treatment's impact on core porosity. Among the diverse reducing agents examined, ferrous chloride emerges as the optimal choice for effectively enhancing hematite solubility. Particularly, a composite solution of ferrous chloride (10 wt.%) and hydrochloric acid (6 wt.%), was highly efficient demonstrated by exhibiting rapid solubilization of hematite filter cakes. A removal efficiency of approximately 99%, with a parallel enhancement in core permeability was achieved. NMR tests reveal the treatment's success in reinstating the porosity system, which had undergone reduction due to drilling fluid particles. Crucially, the solution exhibits a considerably lower corrosion rate than concentrated hydrochloric acid, highlighting its potential to mitigate environmental concerns while ensuring efficient filter cake removal. The findings of this research provide valuable insights into optimizing post-drilling operations, balancing environmental sustainability and operational efficiency. The identified composite solution offers a promising approach to efficient filter cake removal while mitigating environmental concerns associated with corrosion. Overall, this study contributes to advancing the understanding and practice of well productivity enhancement in the oil and gas industry.

Keywords