Physical Review X (Dec 2020)

Certified Quantum Random Numbers from Untrusted Light

  • David Drahi,
  • Nathan Walk,
  • Matty J. Hoban,
  • Aleksey K. Fedorov,
  • Roman Shakhovoy,
  • Akky Feimov,
  • Yury Kurochkin,
  • W. Steven Kolthammer,
  • Joshua Nunn,
  • Jonathan Barrett,
  • Ian A. Walmsley

DOI
https://doi.org/10.1103/PhysRevX.10.041048
Journal volume & issue
Vol. 10, no. 4
p. 041048

Abstract

Read online Read online

A remarkable aspect of quantum theory is that certain measurement outcomes are entirely unpredictable to all possible observers. Such quantum events can be harnessed to generate numbers whose randomness is asserted based upon the underlying physical processes. We formally introduce, design, and experimentally demonstrate an ultrafast optical quantum random number generator that uses a totally untrusted photonic source. While considering completely general quantum attacks, we certify and generate in real time random numbers at a rate of 8.05 Gb/s with a composable security parameter of 10^{-10}. Composable security is the most stringent and useful security paradigm because any given protocol remains secure even if arbitrarily combined with other instances of the same, or other, protocols, thereby allowing the generated randomness to be utilized for arbitrary applications in cryptography and beyond. This work achieves the fastest generation of composably secure quantum random numbers ever reported.