Evolutionary Applications (Aug 2019)

Phenotype–environment mismatch in metapopulations—Implications for the maintenance of maladaptation at the regional scale

  • Jorge Octavio Negrín Dastis,
  • Russell Milne,
  • Frédéric Guichard,
  • Alison Margaret Derry

DOI
https://doi.org/10.1111/eva.12833
Journal volume & issue
Vol. 12, no. 7
pp. 1475 – 1486

Abstract

Read online

Abstract Maladaptation is widespread in natural populations. However, maladaptation has most often been associated with absolute population decline in local habitats rather than on a spectrum of relative fitness variation that can assist natural populations in their persistence at larger regional scales. We report results from a field experiment that tested for relative maladaptation between‐pond habitats with spatial heterogeneity and (a)symmetric selection in pH. In the experiment, we quantified relative maladaptation in a copepod metapopulation as a mismatch between the mean population phenotype and the optimal trait value that would maximize mean population fitness under either stable or fluctuating pH environmental conditions. To complement the field experiment, we constructed a metapopulation model that addressed both relative (distance from the optimum) and absolute (negative population growth) maladaptation, with the aim of forecasting maladaptation to pH at the regional scale in relation to spatial structure (environmental heterogeneity and connectivity) and temporal environmental fluctuations. The results from our experiment indicated that maladaptation to pH at the regional scale depended on the asymmetry of the fitness surface at the local level. The results from our metapopulation model revealed how dispersal and (a)symmetric selection can operate on the fitness surface to maintain maladaptive phenotype–environment mismatch at local and regional scales in a metapopulation. Environmental stochasticity resulted in the maintenance of maladaptation that was robust to dispersal, but also revealed an interaction between the asymmetry in selection and environmental correlation. Our findings emphasize the importance of maladaptation for planning conservation strategies that can support adaptive potential in fragmented and changing landscapes.

Keywords