Scientific Reports (Oct 2023)

Bioplastic (poly-3-hydroxybutyrate)-producing Massilia endophytica sp. nov., isolated from Cannabis sativa L. ‘Cheungsam’

  • Doeun Jeon,
  • Lingmin Jiang,
  • Ki-Hyun Kim,
  • Yuxin Peng,
  • Donghyun Cho,
  • Rae-Dong Jeong,
  • Cha Young Kim,
  • Jae Cheol Jeong,
  • Jiyoung Lee

DOI
https://doi.org/10.1038/s41598-023-44976-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Abstract A rod-shaped, motile, Gram-negative bacterial strain named DM-R-R2A-13T was isolated from the plant Cannabis sativa L. ‘Cheungsam’. The phylogenetic analysis of the 16S rRNA gene sequence revealed that strain DM-R-R2A-13T belongs to the family Oxalobacteraceae and is closely related to members of the genus Massilia, with Massilia flava (97.58% sequence similarity) and Massilia armeniaca (97.37% sequence similarity) being the closest members. The digital DNA-DNA hybridization (dDDH) values between strain DM-R-R2A-13T and Massilia flava CGMCC 1.10685T and Massilia armeniaca ZMN-3Twere 22.2% and 23.3%, while the average nucleotide identity (ANI) values were 78.85% and 79.63%, respectively. The DNA G+C content was measured to be 64.6 mol%. Moreover, the bacterium was found to contain polyhydroxyalkanoate (PHA) granules based on transmission electron microscopy, indicating its potential to produce bioplastic. Genome annotation revealed the presence of PHA synthase genes (phaC, phaR, phaP, and phaZ), and the biopolymer was identified as poly-3-hydroxybutyrate (PHB) based on nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) analyses. Using maltose as a carbon source, the strain produced PHB of up to 58.06% of its dry cell weight. Based on the phenotypic, chemotaxonomic, and phylogenetic characteristics, it has been determined that DM-R-R2A-13T represents a novel species belonging to the genus Massilia. As such, the name Massilia endophytica sp. nov. is proposed for this newly identified species. The type strain is DM-R-R2A-13T (= KCTC 92072T = GDMCC 1.2920T).