Energies (Aug 2021)
Influence of Oxygen Ion Migration from Substrates on Photochemical Degradation of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Hybrid Perovskite
Abstract
Measurements of XPS survey, core levels (N 1s, O 1s, Pb 4f, I 3d), and valence band (VB) spectra of CH3NH3PbI3 (MAPbI3) hybrid perovskite prepared on different substrates (glass, indium tin oxide (ITO), and TiO2) aged under different light-soaking conditions at room temperature are presented. The results reveal that the photochemical stability of MAPbI3 depends on the type of substrate and gradually decreases when glass is replaced by ITO and TiO2. Also, the degradation upon exposure to visible light is accompanied by the formation of MAI, PbI2, and Pb0 products as shown by XPS core levels spectra. According to XPS O 1s and VB spectra measurements, this degradation process is superimposed on the partial oxidation of lead atoms in ITO/MAPbI3 and TiO2/MAPbI3, for which Pb–O bonds are formed due to the diffusion of the oxygen ions from the substrates. This unexpected interaction leads to additional photochemical degradation.
Keywords