BMC Medical Genomics (Apr 2023)

WFS1 autosomal dominant variants linked with hearing loss: update on structural analysis and cochlear implant outcome

  • Hui Dong Lim,
  • So Min Lee,
  • Ye Jin Yun,
  • Dae Hee Lee,
  • Jun Ho Lee,
  • Seung-Ha Oh,
  • Sang-Yeon Lee

DOI
https://doi.org/10.1186/s12920-023-01506-x
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Wolfram syndrome type 1 gene (WFS1), which encodes a transmembrane structural protein (wolframin), is essential for several biological processes, including proper inner ear function. Unlike the recessively inherited Wolfram syndrome, WFS1 heterozygous variants cause DFNA6/14/38 and wolfram-like syndrome, characterized by autosomal dominant nonsyndromic hearing loss, optic atrophy, and diabetes mellitus. Here, we identified two WFS1 heterozygous variants in three DFNA6/14/38 families using exome sequencing. We reveal the pathogenicity of the WFS1 variants based on three-dimensional (3D) modeling and structural analysis. Furthermore, we present cochlear implantation (CI) outcomes in WFS1-associated DFNA6/14/38 and suggest a genotype-phenotype correlation based on our results and a systematic review. Methods We performed molecular genetic test and evaluated clinical phenotypes of three WFS1-associated DFNA6/14/38 families. A putative WFS1–NCS1 interaction model was generated, and the impacts of WFS1 variants on stability were predicted by comparing intramolecular interactions. A total of 62 WFS1 variants associated with DFNA6/14/38 were included in a systematic review. Results One variant is a known mutational hotspot variant in the endoplasmic reticulum (ER)-luminal domain WFS1(NM_006005.3) (c.2051 C > T:p.Ala684Val), and the other is a novel frameshift variant in transmembrane domain 6 (c.1544_1545insA:p.Phe515LeufsTer28). The two variants were pathogenic, based on the ACMG/AMP guidelines. Three-dimensional modeling and structural analysis show that non-polar, hydrophobic substitution of Ala684 (p.Ala684Val) destabilizes the alpha helix and contributes to the loss of WFS1-NCS1 interaction. Also, the p.Phe515LeufsTer28 variant truncates transmembrane domain 7–9 and the ER-luminal domain, possibly impairing membrane localization and C-terminal signal transduction. The systematic review demonstrates favorable outcomes of CI. Remarkably, p.Ala684Val in WFS1 is associated with early-onset severe-to-profound deafness, revealing a strong candidate variant for CI. Conclusions We expanded the genotypic spectrum of WFS1 heterozygous variants underlying DFNA6/14/38 and revealed the pathogenicity of mutant WFS1, providing a theoretical basis for WFS1-NCS1 interactions. We presented a range of phenotypic traits for WFS1 heterozygous variants and demonstrated favorable functional CI outcomes, proposing p.Ala684Val a strong potential marker for CI candidates.

Keywords