BMC Chemistry (Mar 2022)
Green and simple production of graphite intercalation compound used sodium bicarbonate as intercalation agent
Abstract
Abstract In view of the technical difficulties in the preparation of graphite intercalation compound (GIC) such as complex processes, the need to use strong acid reagents, and the product containing corrosive elements. A novel, efficient and simple method used sodium bicarbonate as intercalation agent was developed, which combined with mechanical force and chemical method for the green production of GIC. The production parameters were optimized by the single factor experiments, the optimal conditions were the ball mill speed 500 r/min for 4 h (6 mm diameter of the stainless-steel beads as ball milling media), the decomposition temperature 200 ℃ for 4 h, and 1:1 mass ratio of flake graphite to sodium bicarbonate. SEM results revealed that the prepared product appears the lamellar separation, pores, and semi-open morphology characteristic of GIC. FT-IR results indicated that the preparation method does not change the carbon-based structure, and the sodium bicarbonate intercalant has entered the interlayer of graphite flakes to form GIC. XRD results further showed that the GIC products still maintained the structure of carbon atoms or molecules, and the sodium bicarbonate intercalation agent has entered the interlayer of the graphite, and increased the interlayer distance of the layered graphite. The expandability of GIC products was studied, and the results show that it was expandable, and the expandable volume of GIC products prepared under optimal conditions has reached 142 mL/g. The theoretical basis for large-scale production was provided by studied the mechanism of the preparation method and designed the flow chart. The method has the advantages of simple process, products free of impurities, no use of aggressive reagents, process stable, and does not pollute the environment, being favorable to mass production, and provided new preparation method and idea for two-dimensional nanomaterials with preparation technical difficulties.
Keywords