Open Mathematics (Nov 2019)
Power graphs and exchange property for resolving sets
Abstract
Classical applications of resolving sets and metric dimension can be observed in robot navigation, networking and pharmacy. In the present article, a formula for computing the metric dimension of a simple graph wihtout singleton twins is given. A sufficient condition for the graph to have the exchange property for resolving sets is found. Consequently, every minimal resolving set in the graph forms a basis for a matriod in the context of independence defined by Boutin [Determining sets, resolving set and the exchange property, Graphs Combin., 2009, 25, 789-806]. Also, a new way to define a matroid on finite ground is deduced. It is proved that the matroid is strongly base orderable and hence satisfies the conjecture of White [An unique exchange property for bases, Linear Algebra Appl., 1980, 31, 81-91]. As an application, it is shown that the power graphs of some finite groups can define a matroid. Moreover, we also compute the metric dimension of the power graphs of dihedral groups.
Keywords